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For a fixed integer m ~ 0, and for n = I, 2, 3, ... , let A2n'."( x) denote the Lebesgue
function associated with (0, I, .... 2m) Hermite-Fejer polynomial interpolation at the
Chebyshev nodes {cos[ (2k - I) n/( 2n)]: k = I, 2, "', n}. We examine the Lebesgue
constant A 2m.,,:= max P,m. ,,(x): -I ,,; x,,; I}, and show that A ,m." = Am...( I),
thereby generalising a result of H. Ehlich and K. Zeller for Lagrange interpolation
on the Chebyshev nodes. As well, the infinite term in the asymptotic expansion of
A 1m." as n --> 00 is obtained, and this result is extended to give a complete
asymptotic expansion for A 2. " . 't'. 1995 Academic Pre". Inc.

I. INTRODUCTION

Suppose! is a continuous real-valued function defined on the interval
[ - 1, I], and let

X={xk.n:k=I,2, ... ,n, n=I,2,3, ... }

be a triangular matrix such that, for all n,

(1.1 )

( 1.2)

1 ~ k ~ n, °~ t ~ m,

Then, for each integer m ~ 0, there exists a unique polynomial Hm,,,(X,j, x)
of degree at most (m + I) n - 1 which satisfies

H~/,,(X,j, xk,,,) = <>0, r!(xk ,,,),

Hm.n(X,j, x) is referred to as the (0, I, .." m) Hermite-Fejer (HF) inter­
polation polynomial of f(x), and it can be written as

n

Hm.,,(X,j,x)= I !(Xk,,,) Ak,m,,,(X, x),
k=1
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where A k, m, n( X, x) is the unique polynomial of degree at most
(m + I) n - I which satisfies

1~ k, j ~ n, 0 ~ t ~ m. (1.3 )

Note that R o. n( X, j, x) is the well-known Lagrange interpolation polyno­
mial of I(x).

We consider the uniform norm II/II :=max_1";;x,,;;1 1/(x)1 on C[ -I, I].
The norm of the linear operator Hm.n(X'·,·):C[-l,l] ........ C[-I,I]
defined by H m. n( X, ., . )(f)(x) = H m. n( X, j, x), with respect to the uniform
norm, will be denoted by Am, n( X). This quantity is known as the Lebesgue
constant of order n for (0, I, ..., m) HF interpolation on X, and is given by

where

n

Am.n(X, x):= L IAk,m.n(X, x)\
k=)

(1.4 )

is the Lebesgue function of order n for (0, 1, ..., m) HF interpolation on X.
For Lagrange interpolation, it is known (d. Rivlin [12, Section 1.3 J)

that there exists a positive constant c such that

2
A o n(X»-logn+c,. 11: n = I, 2, 3, ... , (1.5)

for any X. A consequence of (1.5) is the classic result, due to Faber [6],
that for any matrix X, there exists IE C[ -I, 1] so that R o. n(X,j, x) does
not tend uniformly to I(x) on [ -I, I] as n ........ 00. On the other hand, if T
denotes the matrix of Chebyshev nodes

T= {cosCk
2: I 11:): k= I, 2, ... , n; n= I, 2,3, ... },

then

2
A o n( T) ~ -log n + I,, 11: n = I, 2, 3, ... ( 1.6)

(See Rivlin [12, Theorem 1.2].) The modulus of continuity w( J;f) of/is
defined by

w( <5;f) = max{II(s) -I(t)I: {s, t} c [ - I, 1J, Is - tI~ J} .
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It follows from (1.6) (d. Rivlin [11, Section 4.1]) that if f E C[ - 1, 1]
satisfies the relatively weak condition w( l/n;f) log n ---+ 0 as n ---+ 00, then
the sequence of Lagrange interpolation polynomials H o, n( T,f, x) converges
uniformly to f(x) on [-1,1] as n ---+ 00. In view of these results, it can be
seen that the Chebyshev nodes T are a good choice if uniform approxima­
tion by Lagrange interpolation polynomials is required.

For (0, 1,2) HF interpolation, Szabados and Varma [20] showed that
there is a constant CI > 0 so that for any system of nodes X,

This result was extended by Szabados [19], who proved that there are
positive constants Cm so that

A 2m. n(X) ~ Cm log n, m =0,1,2, ... (1.7)

Thus, for any system of nodes X, H 2m. n(f, x) cannot converge uniformly to
f for all f E C[ - 1, I].

The problem of (0, 1, ..., m) HF interpolation on the Chebyshev nodes
(and on their generalization, the Jacobi nodes) has been studied by Sakai
[13, 14], Vertesi [21,22] and Sakai and Vertesi [15, 16]. In these papers
it is shown that for each odd value of m, the Lebesgue constant Am, n(T)
is bounded as n ---+ 00, while if m is even,

Am. n( T) = O(log n), as n ---+ 00. ( 1.8)

(Thus the order of magnitude on the right-hand side of (1.7) cannot be
increased.) The aim of this paper is to extend the results of Sakai and
Vertesi concerning A 2m, n( T).

For Lagrange interpolation on the Chebyshev nodes, Ehlich and Zeller
[5] have proved that

( 1.9)

(See also Rivlin [12, Section 1.3] for a proof of (1.9), and Brutman [1]
and Giinttner [7] for closely related results.) This result was a key step in
the process of finding a complete asymptotic expansion of A v. n( T). In this
paper we generalise Ehlich and Zeller's result by proving the following
theorem.

THEOREM 1. For m = 0, 1, 2, ... , we have

(1.10)
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It follows from (1.4) and (1.1 0) that

A 2m, n( T) = L IAUm. n( T, 1) I,
k~l

By developing careful estimates for the IA k , 2m. n( T, I )1, we are able to
improve (1.8) by establishing the following result.

THEOREM 2, As n ~ 00,

(1.11)

Thus the leading term in the asymptotic expansion of A 2m n( T) decreases
with increasing m, and, indeed, behaves like 2n~3/2m -1/2 log n for large m.

In general it seems to be awkward to derive a complete asymptotic
expansion for A 2m,n(T). However, Shivakumar and Wong [18] have
shown that A o.n( T) has the asymptotic expansion

(1.12)

where}' denotes the Euler-Mascheroni constant,

the B:s are the Bernoulli numbers, and

s = 1, 2,3, ... ,

r = 1, 2, 3, ... (1.13 )

(Analogous results to those of Shivakumar and Wong have been developed
independently by Dzjadyk and Ivanov [4] and Giinttner [8].) In this
paper we are able to derive the following asymptotic expansion for A 2, n( T),

THEOREM 3. The Lebesgue constant A 2• n( T) can be written as

I (1 ( 8) 14 )A 2 n(T) =-Iog n + - }' + log- +l((3)
. n n n n-

(1.14)
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where ((k) denotes the Riemann zeta function ((k) = 'L.::'= I n -k,

(so C" > 0), and
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( 1.15)

r=2, 3, ...

(1.16)

We will prove the above theorems in the following three sections of this
paper. Also, for notational convenience, we will henceforth remove specific
reference to T, and write Ak.m.,,(x)=Ak.m.,,(T, x), Am,,,(X) =Am.n(T, x),
A m . n = A m .,,( T), and

Xk = Xk." = cos (2k2~ In), k=I,2, ... ,n. ( 1.17)

2. PROOF OF THEOREM 1

Our proof of Theorem 1 is based on Ehlich and Zeller's method for
establishing (1.9), as described in Rivlin [12, Section 1.3].

Let .rM . 1 denote the set of all trigonometric polynomials T( e) which can
be written in the form

M~l

T( e) = 00 + I. (Ok cos ke + bk sin ke) + OM cos Me, (2.1)
k~l

and let .'Y,H.2 denote the set of all trigonometric polynomials T( 0) which
can be written as

M-I

T(e) = 00 + L (Ok cos kfJ + bk sin kO) + bM sin Me.
k~ J

By a result of Cavaretta, Sharma and Varga [3], the problem of
(0, 1, 2, ... , 2m) Hermite interpolation by trigonometric polynomials on the
nodes (kn)/n (k = 0, 1,2, ... , 2n - I) has a unique solution in the class
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~(2m+ 1), I' Thus, given numbers Ck, I (k = 0, I, ..., 2n - I; 1=0, I, ..., 2m),
there exists a unique T( 8) E ~(2m + 1l. I such that

o~ b;; 2n - 1, 0 ~ I ~ 2m.

(A different proof of the result of Cavaretta, Sharma and Varga is given by
Sharma, Smith and Tzimbalario [17], and the results of both papers are
described in Riemenschneider, Sharma and Smith [10, Theorem A].)
Upon replacing 8 with () - nj(2n) in (2.1), it follows that for the nodes
(2k - 1) nj(2n), (k = 1, 2, ..., 2n), the problem of (0, 1,2, ... , 2m) Hermite
interpolation by trigonometric polynomials has a unique solution in the
class ~(2m + 1),2'

Now define

n
()j = ()j, n= (2j - I ) 2n' j=O, ± I, ±2, ... ,

and let m ~ 0 be given. For k = I, 2, ..., 2n, let dk,2m( ()) be the unique
element of ~(2m + I), 2 which satisfies the 2n( 2m + 1) conditions

Define

1~ j ~ 2n, 0~ t ~ 2m. (2.2)

and

2n
D2m,n(e) = I Idk,2m(e)!,

k~1

11 2m.n= max{ D2m, n(e): 0 ~ e ~ 2n}.

(2.3)

In the following three lemmas we develop a useful characterization
of 11 2m,n'

LEMMA l. 112m.n=max{D2m,n(e): lel~nj(2n)}.

Proof Let

k= I, 2, ... , 2n.

The ek,2m are in ~(2m+ I), 2, and satisfy

°~ j ~ 2n - I, 0 ~ t ~ 2m.
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(2.4 )
k = 2, 3, "., 2n.

By the uniqueness properties of the dk,2m' it follows that e I, 2m( 8) ==
d2n,2m({J) and ek,2m(0)==dk_ I ,2m(0) (k=2, 3, "', 2n). That is,

{
d), 2m( 0 + nln) ~ d2n.2m( 0),
dk,2m( 8 + nln) = dk _ I, 2m( 0),

Hence, by (2,3),

and so

This completes the proof of Lemma 1, I
Now define

n ~

12m,n(8) = L (-I)k- 1 dk,2m(8)- L (-I)k- 1 dk,2m(8). (2.5)
k=] k=n+1

LEMMA 2. (i) Ll 2m,n=max{t2m,n(t9): \01 ~nl(2n)};

(ii) t2m, n(8) is an even function of 0,

Proof (i) Put

k = 1, 2, "., 2n,

Each fk, 2m is in 3";,( 2m + I), 2, and the fk, 2m satisfy

1~j ~ 2n, 0 ~ t ~ 2m,

Thus fk, 2m( 0) == dk, 2m( 0), That is,

dk,2m(28k - 0) ==dk,2m(0). (2.6)

DifTerntiating (2.6) 2m + I times, then putting 0 = Ok> gives

d(2m+])(0 )-0k,2m k - ,

while on putting 0 = Ok + n' and using Ok + n= Ok _ n+ 2n, we obtain

d (2m+I)(Ll )-0k,2m lIk+n - ,

Now, for each k = 1,2, "., 2n, d~. 2m(8) is a trigonometric polynomial of
order n(2m+l) or less which satisfies dLr)2m(Ok+,) =0, -(n-I)~r~n,

I ~t~2m, and dk:';:I(Od=dk~:Z:I)(Ok+:.)=O.Thus we have located
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2n - 2 zeros of d~, Zm((J) of multiplicity 2m, and 2 zeros of multiplicity
2m+l, in the interval (Ok-n,Ok+nl Further, from dk,zm(Oj)=Ok,j,
I :( j :( 2n, it follows from Rolle's Theorem that d~, 2m( 0) has a zero in each
of the intervals (Ok-r-I, 0k-r) and (Ok+" 0k+r+l) for I :(r:(n- L We
have therefore found at least 2n(2m+ I) zeros of d~,zm(O) in (Ok_n, 0k+n],
and so, because d~, Zm((J) has order no greater than n(2m + 1), we have
located all the zeros of d~, Zm (0), Hence dk , Zm( 0) is of constant sign on
(Ok-bOk+l), and on each of the intervals (Ok-r-I,Ok-r) and
(Ok +" Ok +r + Jl for I :( r:( n - L Now, dk, Zm((}k) = + I, and since dk, Zm( 0)
has zeros of odd multiplicity at Ok ±j' I ~ j ~ n - 1, it follows that for
o~ r ~ n - I, we have

sgn( dk , Zm( 0)) = ( - I)',

Thus, in the intervals (-n/(2n), n/(2n)) = (00 ,°1 ) and (2n - n/(2n),

2n + n/(2n)) = (OZn, OZn+ I),

I~k~n

n+l~k~2n
(2,7)

and so, by (2,7) and Lemma I,

Azm,n = max {(Zm. nUJ): I01 ~ n/(2n)}.

(ii) Put

k = I, 2, ... , 2n,

Then each gk, Zm(O) is in §;,(Zm+ I), z, and

g~~IZm(Oj) = (-I)' di:~_k+ I,Zm( -OJ)

= ( - I)' di~_ k + I, Zm (OZn - j + 1 )

Thus gk, Zm( 0) == dk , Zm( 0), or

dk , Zm( - 0) == d2n - k + I, Zm( 0), (2,8)

and so, by (2.5), it follows that (Zm, r,( 0) is an even function. This completes
the proof of Lemma 2, I

LEMMA 3. A zm.n = {Zm, 10(0),

Proof Let (j E [ - n/(2n), n/(2n)] be such that A 2m, 10 = (Zm, n( B), We need
to show that [} = o.
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First, suppose 8= ±n/(2n). Then, by (2.2) and (2.5), (2m.II(8)=
t2m. II( 01 ) = I, and so L1 2m• II = 1. Consider

2/1

'2m./I(O)= L dk . 2m(0),
k~ ]

which satisfies

I :>;. j :>;. 2n, 0:>;. [:>;. 2m.

Thus u 2m. II (0);= I -'2m.II(0) is a trigonometric polynomial of order
n(2m + I) or less which has zeros of multiplicity 2m + I at 0 1 , O2, ... ,0211 ,
and no other zeros in [0, 2n], or else is identically zero. In the former case,
u2m. II(0) changes sign at each of the OJ' and so, in particular, there exists
0* close to 0 1 so that u2m. II (0*) <0 (and hence '2m.II(0*) > I). But then

2n 2n

1=L12m.II~D2m.II(0*)= I Idk,2m(f;l*)I~ L dk,2m(O*) ='2m./I(0*) > I,
k~ 1 k~]

which gives a contradiction. On the other hand, if U 2m. II( 0) == 0, then
'2m. IIU}) == I, and so for all 0 we have

2/1 2/1

I~D2m.II(O)= L Idk,2m(f;l)I~ I dk,2m(f1) ='2m.n(f;l) = I,
k= 1 k~]

which implies that D2m,/I(0) == 1. However, D 2m,/I(O) and t2m.ntO) coincide
on (00 , 0]), so t2m, II(0) == I. For n ~ 2 this provides a contradiction, since
(2m, n( O2 ) = -1. We conclude that 8 f= ±n/(2n) if n ~ 2, while if n = I and
e= ± n/(2n), then t2m II(0) == 1.

Second, suppose 0< lei <n/(2n). Because t2m,II(O) is even, we have
[2m./I( e) = (2m. II( - e), and so (;m. II( 0) has a zero between - (j and e, in addi­
tion to t;m, II (e) = t;m. II( - e) = 0, for a total of at least 3 zeros of t;m, 11(£)) in
(00 ,0]),. Further, by (2.4) we have dk,2m(0+n)==dk _ II . 2m(0), n+l:>;.
k ~ 2n, and dk • 2m( () + n) =- dk +/1. 2m(fJ), 1~ k ~ n, so that (by (2.5)),

Thus l;m,/I(O) has at least 3 zeros in (0 11 ,011 + I)' Now, by (2.2) and (2.5),
t;m,n! 0) has zeros of order at least 2m at 0], O2 , .. " 0211' As well, from

I :>;.j:>;. n,

n + I :>;. j:>;. 2n,

we see that t2m, /1(0) has an absolute minimum point O~ in (0 1,03 ), so t~m. III 0)
has a zero of odd multiplicity at O~, If O~ = (}2' then the multiplicity of the
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zero of t~m. n( 0) at O2 must be at least 2m + 1, while if O~ i'°2, t~m. n( 0) has
a zero of multiplicity at least 1 at O~. In either case, we have identified an
additional zero of t;m, n( 0). Similarly, there is an additional zero of t;m, n(0),
corresponding to a maximum point of t2m,n(0), in (02,04 ), Continuing
in this fashion, we are able to identify a total of 2n - 4 additional
zeros of t;m,nO) in ((}o, (}2n], one in each of the intervals (° 1 , °3 ),

((}2' (}4), "', (On-2, On), ((}n+1> (}n+3)' .", (02n-2, (}2n)' Thus the trigo­
nometric polynomial t~, n( 0), which is of order no greater than n(2m + 1),
has at least 2n(2m + 1) + 2 zeros in (£1 0 , B2n J, and so is identically
zero. Hence t2m.n(0) is constant. However, for n?2, t2m,n(B1 )=1 and
12m,n((}2) = -1, so we have a contradiction. Thus edoes not satisfy 0 <
/01 < n/(2n) if n? 2, while if n = 1 and 0 < 101 < n/(2n), then 12m n(O) = 1.

The above results have established that ehas the unique v~lue of 0 if
n ? 2, while for n = 1, either 12m. n( B) = 1 or ehas the unique value of O. In
all cases, then, we have Ll 2m, n= 12m, n(O) = D 2m.n(O), This completes the
proof of Lemma 3. I

To complete the proof of Theorem 1, we show that

By (2.8), dk . 2m(B) + d2n - k +1,2m(0) is an even function, and so is a cosine
polynomial of degree n(2m + 1) - 1 or less. If x = cos £1, it follows that for
k = 1,2, ... , n,

(2.9)

is an algebraic polynomial in x of degree n(2m + 1) - 1 or less, Further, for
j= 1,2, .", n, and x j given by (1.17), we have (by (2.2)),

Differentiating (2.9) with respect to 0 gives

- sin £1 q~. 2m(X) = d~. 2m( B) +d~ -k + I. 2m(0),

and so (again by (2.2)), Qk,2m(Xj )=O. Continuing in this fashion, we
obtain

1~ k, j ~ n, 0 ~ 1~ 2m.

Thus, by the uniqueness property of the fundamental polynomials
Ak,2m.n(x) for (0, 1, 2, "., 2m) HF interpolation on the Chebyshev nodes,
we conclude that

1~k~n.
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Thus, for -I ~ X~ I, we have

"
A.2m. n(X) = L: IAUm.n(x)1 = L: Idk,2m({!) + d2n - k +1.2m(O)1

k~ 1 k~ 1

2n
~ L Idk.2m(O)I=D2m,n(O)~L12m,n·
k~1

On the other hand, consider

A.2m,nfl)= L Id",2m(O)+d2n - k + I ,2m(O)I·
k~l

By (2.7), sgn(dk.2m(O»=sgn(d2n_k+l.2m(O»=(-I)k-1, and so

n

A. 2m.,,(1) = L (_l)k-l(dk,2m(O)+d2n_k+I.2m(O»
k=1

n 2n

= L (-I)k- 1 d k. 2m(0)- L (_1)k- 1 dk,2m(O)
k~l k=n+1
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(2.10)

From (2.10) we conclude that

and so Theorem I is established. Also, for future reference, we observe that
(2.11) can be written as

"
A 2m.n = I. (-I)k- 1 A k. 2m.,,(l).

k=1

3. PROOF OF THEOREM 2

(2.12 )

To begin, consider the arbitrary system of nodes X = {x k •Ill. as given by
( 1.1) and (1.2), and define

n

wn(X,x)= n (X-Xk,n)'
k~1
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The polynomials Ak,o,,.(X, x), which are the fundamental polynomials for
Lagrange interpolation on X, can be written as

1~k ~n,
W I1(X, x)

Ak,o,,.(X,x):=lk,,.(X,x)= I )( "

W/l(X, Xk,,. x - xk,/l)

Then an explicit formula for the fundamental polynomials A k , m, /l( X, x) for
(0, 1,2,3, ',., m) HF interpolation on X is

m

A k,m.I1(X,X)=(lk,/l(X,X))m+! I h;.k.m,/l(X-Xk'/l)i,
i=O

1 ~ k ~ n, (3.1 )

where the coefficients h;,k,m,,. (which also depend on X) can be determined
from (lJ) (cJ. Vertesi [21J or Sakai and Vertesi [15J).

Now let m ~ 0 be fixed, and assume the nodes of interpolation are the
Chebyshev nodes Xk=Xk,/l=COSf}k, k=1,2, ... ,n, where 0k=f}k,/l=

(2k-l)n/(2n). By Sakai and Vertesi, [15, Theorem 3.3] and [16,
Theorem 5.5], we have

hi k 2m /l = O( 1) (~f})i,., , sm k
o~ i ~ 2m, 1~ k ~ n, n = 1, 2, ..., (3.2)

where, both here and subsequently, the 0(1) term is uniform in i, k and n.

(That is, if the 0(1) term is denoted by Ci , k, 2m, "' then there exists a
positive number C so that ICi . k , 2m,/l1 ~ C for all values of i, k and n,) Also,
if T/l(x) denotes the Chebyshev polynomial T,,(x) :=cos n(arccos x),

- 1~ x ~ 1, whose zeros are the Chebyshev nodes {xk }, then

T,,(x)

Hence, by (2.12), (3.1) and (3.2), we have

" h (. () )2m + 1= I 2m. k. 2m, /l sin k

k~J I-cos Ok n

+ 0(1) ±21lf 1( sin (h ) 2m + 1- i.

k~l ;=0 n(l-cosf}k)
(3.3 )
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Now

I 2I 1
( sinek )2m+l-i=

2mi l ±(cot(ek /2))i,
k ~ 1 i ~ 0 n( 1 - cos ek ) i ~ 2 k ~ I n

and because ecot (I is bounded on [0, n/2], we can write

2m+1 " (cot(e./2))i 2",+1" 1L L: k = O( 1) L L~
i=2 k~l n i~2 k~l (n k)

Thus (3.3) gives

II h (Sin (I )2m + IA 2m. ,,= I 2m. k. 2m. " __k + O( 1).
k = ) 1 - cos ek n

359

(3.4 )

The following estimate for the h 2m. k. 2m," is a consequence of a more
general result due to Sakai and Vertesi [15, Theorem 3.3].

LEMMA 4. For) = 0, 1, 2, .", define po~}'nomials p)s) of degree) by

Pols) = 1,

j= 1, 2, 3, ".,

and

1 j (2) + 1)
Pj(s + 1) = 2) + 1 i~O 2i PieS).

( Thus

(3.5 )

(3.6)

( 3,7)

j=I,2,.", s=I,2, ... ,

and so Po(s)=I, pds)=s/3, p2(s)=(5s2-2s)/15, p3(s)=(35s3 -42s2+
16s )/63, etc,) Then lve can write

(_I)m ( n )2m
h2m k 2m "=~(2)1 Pm( -(2m + 1)) -'-(1- (1 + ed,'" m . S10 k

I ~ k ~ n, (3.8)
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where Gk = Gk, n satisfies
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I ~k~n, n ~2, (3,9)

and K = minCk, n -k + 1),

On substituting (3.8) and (3.9) in (3.4) we obtain

A _(-l)mpm(-(2m+l))~

2m,n - (2m)! n

x C~I [1 + 0(1) G+ ~2)] cot(Od2 )) + 0(1). (3.10)

Now, ~LZ=lcot(OkI2)=~logn+0(1). (See, for example, Rivlin [12,
Section 1.3].) Also, because (} cot 0 is bounded on [0, n12], we can write

[in + Il/2] 1
=0(1 ) L k 2 = 0(1 ),

k=l

Thus, by (3.10), we have, as n -+ 00,

2(-l)m pm (-(2m+l))
A2mn =- 2 )' logn+O(1). (3.11), n ( m .

To evaluate Pm( - (2m + 1)) we need the following lemma. At several stages
of the proof of the lemma, properties of the generalized Bernoulli polyno­
mials Bkal(x) are used-details of these properties can be found in, for
example, Luke [9, Section 2.8].

LEMMA 5. For j = 0, 1,2, ..., suppose the polynomials p)s), of degree j,
are defined by (3.5), (3.6) and (3.7). Let BLa)(x) denote the generalized
Bernoulli polynomial, defined by

Then, for all s,

ItI < 2n.

j=o, 1,2, ... (3.12)
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(3. I3)

Proof Since Po(s) = B~)(s) = 1 for all a, s, then (3.12) is true for j=O.
We next use induction on s to prove that for j~ 1, the equation (3.12)
holds true for s = 0, 1,2, ... From Pj(O) = B~O)(O) = 0 for all j, k ~ 1, it
follows that (3.12) is true for all j ~ 1 if s = O. Suppose (3.12) holds for all
j ~ 1 if s = r. Then, by (3.7),

__1_ ~ (2j + 1) _ 1 ~ (2j + 1) 2i (-r)

p;ir + 1) - 2j + 1 i:-O 2i Pi(r) - 2j + 1 i-:-O 2i 2 B 2i (-r/2).

Using B~~XIl(x) = 0 for k = 0, 1,2, ..., then reversing the order of summa­
tion, we obtain

_ (-2fj+ I 2j+ I (2j + 1)( _!)i (-r) _
pir+l)- :4+1 i~O i 2 B2j + 1 - i ( r/2).

However (Luke [9, p. 21 ]), for all k, a, x, y,

B~O)(x+y) = itC) Bio~J y) Xi,

and so

(_2)2j + I

Pj(r+1)= :4+1 Bi;';II(-(r+1)/2).

Now, by Luke [9, p. 20], for all k, a, x,

aB~o+ I)(X) = (a - k) Bio)(x) + k(x - a) B~o~ I(X).

Applying this formula to the right-hand side of (3.1 3), and using
B~j-ttl»)( -(r+ 1)/2)=0, gives

pj(r + 1) = 22jBij~(r+ 1))( - (r + 1)/2),

as required. Thus, for fixed j, (3.12) holds true for s = 0, 1,2, ... Since both
sides of (3.12) are polynomials, we conclude that (3.12) is valid for all
real s. I

Now, by (3.12), we can write Prn( - (2m + 1» = 22mB~;; + 1)( (2m + 1)/2).
However (Luke [9, p. 20]), for all k,x, we have Bik+I\X)=
( _l)k n;~ 1 (r - x). Thus

Substituting this result into (3.11) gives the desired (1.11).
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4. PROOF OF THEOREM 3

The fonnula (2.12) gives

"
A 2,,, = L (- I)k -I Au."O),

k~1

Now, the A k • 2.)x) are given by

(see Byrne, Mills and Smith [2, Section 1]), Since T" (l ) = I, we obtain
(for Ok = Ok,,, = (2k -I) nj(2n)),

I ~ ( sin ek 2 sin ek )

A 2'''=2n 3 L., (I-cose )2+
n l-c~s8k ~ 1 k k

and hence

From cot 3 X=1:i:"(cotx)-cotx, and ~L:~=lcot(ekj2)=Ao,,, (see, for
example, Rivlin [12, Section 1.3 J), it follows that

I I" d
2 1A 2, " = -2 A 0,,, +-83 L -d2 (cot x)

n k= 1 X x=II>/2
I

:="2 A o,,, + S. (4,1 )

By Shivakurnar and Wong's result (1.12) the asymptotic behaviour of AO,n

is known, so we need to look carefully at the summation tenn S on the
right-hand side of (4, I),

From the well-known expansion

Ixl <n,
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we obtain

_16 ~ 1 _~ ~ \B2r ! (~)2t ~ 2k- 2r-3

5- n3 /::
1
(2k_l)3 n3r~22t(2t-3)! 2n /::1 ( 1)

:=51 -52 ,

363

(4.2)

Shivakumar and Wong [18, Examples 1 and 3] have established the
following asymptotic results.

LEMMA 6. If IX is any real number, not -lor a positive integer, then, as
n -+ oc,

where, if r is a positive integer such that r> (IX + I )/2, the error due to
truncation of the infinite series at the term s = r - 1 is bounded in absolute
value by, and has the same sign as, the first neglected term.

If P is a positive integer, then for any r = 1,2, ... , [PI2] + 1, we have

n (2n )P + I r - I (P + 1) BI (2k -1)P = I (1- 22"-1)~ + f.~li)(n),
hI P+ 1 s=o 2s (2n)'

where f.~PI(n) = 0 if r = [PI2] + 1, and

(2n)fJ + I (P + I) IB I0,< (-I)' IPl( ),< (2 2r - 1 _ I) _2,_
'" [; r n '" P + 1 2r (2n )2,

if r < [PI2] + 1.

(4.4 )

By (4.3), and the remarks concerning the error in trunction, we can write

where

0,«-1)'+1 U(n),<_2_(2r+I)(2 2,-I_I) IB2,1 (4.6)
'" ''''n 2n 3 (2n)2"

so it remains to consider the term 52 in (4.2).
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Fix R~ I, and for 1=2,3, ..., put p=21-3 and

{
I-I

r = r(t) = '
R,

1=2,3, ... , R,

I=R+ I, R+2, ... ,

in (4.4). This gives

n (2n)2t-Z r(I)-1 (2t 2) H
"(2k-Ift-3= ,,- (l_2 ZS - I )_ZS_+e(Zt-3)(n)/:::1 21 - 2 s:-o 2s (2n)zS r(l) ,

(4.7)

where

{

e(Zt_3)(n) = 0 2 So 1:< R + 1
r{t). , """-:::: -......: ,

0:«_I)R e(ZI-3)(n)So(2n)Zt-Z(2t-2)(2 ZR - 1 _I) IB2R I
'" r(1) '" 2t-2 2R (2n)ZR' I~R+2.

(4.8)

Now substitute (4.7) into the formula for Sz, so

(4.9)

where

(4.10 )

On replacing R with r and interchanging the orders of summation in (4.9),
we have

8r-1 (l - 215
-

1
) Bzs en Tt

Zt IHztl (2t - 2)
Sz= Tt3 s~o 4nZ(2n)2s t~~+221(2t-2)! 2s + Vr(n).

Now, by Shivakumar and Wong [18, equation (3.12)],
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Therefore,

2 r-I(22.. - I -l)B
S-" 2s

2 - - n 2n 3 s~o (2nf'

X
(

n2S+2(22S+I_l) IB2s+21 )
(2s+ 1) + Vr(n),

(2s)!(s+l)

where (by (4.8) and (4.10)),

0":;;(-1)' Vr(n)

2 (2 2r - 1 _l)IB l(n2r+2(22r+l_I)IB I ),,:;; _ 2r 2r + 2 _ (2r + I) .
n2n 3 (2n)2r (2r)! (r + I)

365

(4.11 )

(4.12 )

Next, on substituting (4.5), (4.6), (4.11) and (4.12) into (4.2), we obtain

14 1
S=-(3)--

n 3 6nn2

8 r (-I)"'(22S-3-1)(22S-I-l)/B2.. _2/1B2.. / n 2s

+ n 3 S~2 s(2s-2)! (2nfs+ Wr(n),

(4.13 )

where

8 (22r-I_I)(22r+I_I) IB liB I n 2r + 2o:< ( I )r + 1 W ( ):< 2r 2r + 2
'" - r n '" n 3 (r + I )(2r)! (2n fr + 2 .

(4.14 )

The statement (1.l4) of Theorem 3 now follows if we substitute (1.l2) and
(4.13) into (4.1), and define IJ'r(n) = !l1>r(n) + Wr(n). To complete the
proof of the theorem, we need to establish the error estimate (1.l6) for
IJ'r(n).

To begin, for s = 2, 3, ..., consider the term

D .= 2s(2s - 1) (22' - 3 _ 1) IB I_ (22s - I - 1) IB I
s . n2 2s - 2 4 2s ,

which appears in the expression (1.15) for Cs' Since IB2s 1 =
2(2s)!j(2n)2s) L~l t- 2s (see Luke [9, p. 23]), we have

/i4flSI ')·5
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(2s)' [ ex: 1 'Xl]D =-_. 8(2 2.<-3-1)" t- 2.<+2 __ (2 2.<-'_I) " t- 2s
s (2n)2.< L. 2 L,

t= 1 '~l

(2S)1 ['Xl ex:]>-----i; 8x2 2,,-4 L t- 2s + 2_22.<-2 L t- 2.<+2
(2n) ,~' t~'

22.<-2(2s)! 00

= " t- 2s +2>0
(2nf.< 1:-'

(so C,>O). Now, from (1.13) and (4.14) it follows that

(2 2r + l _l) r+ln(2n)2r+2 (r+l)(2r+2)!
- 4 \B2r + 21,,:;(-I) "8 - (2 2r + l _l) IB I 'Pr(n)

n 2r + 2

(4.15)

By the positivity of D r + 1 we have

(2r+2)(2r+l)(2 2r -'_I)IB I _(2
2r

+
1
-l)IB I

n2 2r < 4 2r + 2 ,

and substituting this inequality into the left-hand side of (4.15) yields the
desired (1.16).
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